>百科大全> 列表
三角函数正切诱导公式
时间:2025-04-09 10:25:22
答案

正切函数诱导公式

tan(2π+α)=tanα

tan(-α) =-tanα

tan(2π-α)=-tanα

tan(π-α) =-tanα

tan(π+α) =tanα

公式一:设α为任意角,终边相同的角的同一三角函数的值相等

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:任意角α与-α的三角函数值之间的关系

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:π/2±α与α的三角函数值之间的关系

  sin(π/2+α)=cosα

  sin(π/2-α)=cosα

  cos(π/2+α)=-sinα

  cos(π/2-α)=sinα

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  cot(π/2+α)=-tanα

  cot(π/2-α)=tanα

推荐
Copyright © 2025 光热知识网 |  琼ICP备2022020623号 |  网站地图